
Speech Dialog Generation from Graphical UIs of Nomadic
Devices and the Integration into an Automotive HMI

6YHQ 5HLFKHO
8OP 8QLYHUVLW\

,QVWLWXWH RI 0HGLD ,QIRUPDWLFV
8OP� *HUPDQ\

VYHQ�UHLFKHO#XQL�XOP�GH

8WH (KUOLFK
'DLPOHU $*

5HVHDUFK DQG 'HYHORSPHQW
8OP� *HUPDQ\

XWH�HKUOLFK#GDLPOHU�FRP

0LFKDHO :HEHU
8OP 8QLYHUVLW\

,QVWLWXWH RI 0HGLD ,QIRUPDWLFV
8OP� *HUPDQ\

PLFKDHO�ZHEHU#XQL�XOP�GH

ABSTRACT
More and more people use smartphones regularly for vari-
ous tasks. Due to distraction issues, the usage is prohibited
while driving and thus an integration into the automotive
HMI is needed. As speech interaction distracts less than
visual/haptic interaction, the smartphone integration needs
to support the speech interaction concept of the automo-
tive infotainment system. This paper presents a method to
generate the lexicon, grammar, and dialog flow for the car’s
Speech Dialog System (SDS) based on the GUI specifica-
tion of smartphone applications. Our approach is platform-
independent and application-independent, provides consis-
tent dialogs for all smartphone apps, and complies with the
car’s interaction paradigm.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—GUI; Natural language; Voice I/O

Keywords
Modality translation, multimodal software development, syn-
onym phrases, task-based interaction

1. MOTIVATION
Nowadays, people would like to use nomadic devices even

while driving. Therefore, automotive HMIs provide connec-
tions to phones, mp3 players, and smartphones. However,
only the basic functionality of these devices is available in
the HMI and people tend to use smartphones despite it is
prohibited and dangerous. Many solutions evolved which
integrate the smartphone’s UI in the automotive HMI and
allow a visual/haptic interaction (e.g. MirrorLink1). How-
ever, voice control is neglected. On smartphones, there are
applications (apps) which support voice control (e.g. Ap-
ple’s Siri). They could be used and integrated into the au-
tomotive HMI. However, not all functions can be controlled
by voice - especially, third party apps are neglected.
In general, to develop a multimodal app two approaches

are common: specifying each modality or defining the UI
with modality-independent models. Manual specification for

1http://terminalmode.org/

Copyright held by author(s).
AutomotiveUI’12, October 17-19, Portsmouth, NH, USA.
Adjunct Proceedings

multiple modalities is time-consuming and model-based de-
velopment requires special knowledge by the developer. Fur-
thermore, for apps on smartphones the visual/haptic modal-
ity works fine but from the developer’s point of view it does
not pay off to provide multiple modalities. As a result, the
speech modality is missing by integrating the smartphone
into an automotive HMI. Adding this manually is not possi-
ble due to the quantity and open application scope of third-
party apps.

So far, no domain-independent integration of nomadic de-
vices into an automotive HMI considering speech modality
exists. To resolve this and allow voice control of smartphone
apps, this paper shows work-in-progress to extract user tasks
from the GUI and to generate speech dialogs based on the
tasks. As GUIs of smartphones overlap with websites to
some extend, [2, 6, 3] form a basis for our work.

2. TRANSLATIONFROMVISUAL/HAPTIC
MODALITY TO SPEECHMODALITY

In the development process of an app the developer con-
siders the user’s tasks as well as the app’s functions and
creates a UI providing the interaction possibilities. On a
smartphone the UI consists of various GUI widgets which
are assembled logically in a hierarchical structure. Each of
the widgets has specific functions which support the users
to complete their tasks. We analyze the elements on the
GUI in terms of attributes, affordances, and relationships
to each other to derive from the elements a set of tasks the
user can perform with the GUI. We use the tasks to trans-
late the visual/haptic modality into speech dialogs. As each
modality requires an adaptation of interaction elements to
supply an efficient usability [4], we have chosen to first ab-
stract the GUI to task level and second reify the tasks to
speech dialogs (see Figure 1). This process complies with
the CAMELEON Reference Framework (CRF)[1].

The abstract GUI elements are based on Simon et al.’s
classification [5], however, are refined by considering the user
tasks. This results in the abstract GUI elements: informa-
tion, multimedia, state, action, input, and structure. Each
platform-dependent GUI widget can be abstracted with these
types. In the first step of the translation a platform-depen-
dent GUI description (Android XML) is abstracted to User
Interface Markup Language (UIML). The UIML file contains
the assembling of the GUI in abstract GUI elements includ-
ing important attributes like size, color, emphasis, grammar,
and ontology. For example, a TimePicker (widget for select-
ing the time of day) in Android is abstracted to an input
element referencing the time ontology. Each abstract ele-

Adjunct Proceedings of the 4th International Conference on Automotive User Interfaces and 
 Interactive Vehicular Applications (AutomotiveUI '12), October 17–19, 2012, Portsmouth, NH, USA

34



XSLTPlatform-Dependent GUI 
Android Widgets (XML)

Platform-Independent GUI
Abstract GUI Elements (UIML)

Meta Speech Dialogs
SDF Dialog Specification (XML)

Tasks

Figure 1: Translation steps from visual/haptic modality to speech modality

Figure 2: Semantic of TextField is defined by Label
(Screenshot)

ment stands for various tasks. For example, an input ele-
ment allows the insertion of text and presents the inserted
text to the user. Furthermore, for each task meta speech
dialogs are specified which allow task execution by speech.
In summary, the GUI is translated into meta speech dialogs
which are instantiated with application data at runtime.

3. INSTANTIATIONOF SPEECHDIALOGS
WITH DYNAMIC DATA FROM APPS

The meta speech dialogs are instantiated with data from
the corresponding GUI element on the smartphone. Based
on this, vocabulary and grammar for the SDS are gener-
ated. The grammar includes in each phrase a user task
and its semantic GUI reference. The semantic GUI refer-
ence is the element users associate with the task. The ab-
stract GUI element which can fulfill the user’s task differs
from the one providing the semantic information. Consider-
ing the Western Culture with reading direction from left-to-
right and top-to-bottom, a GUI element sets the semantic
for its following ones. For example, in Figure 2 the Label’s
description (“Next Meeting”) assigns the semantic for the
following input elements (“2012/10/17” and “Portsmouth”).
Our matching algorithm processes a UIML GUI description
and identifies a GUI element which can fulfill the user’s task
based on the element providing the semantic information.
An example phrase for the GUI in Figure 2 is: “Set Next
Meeting to 2012/10/17”.
So far, only runtime values and meta phrases are con-

sidered which result in an enhanced “say-what-you-see” sys-
tem. In natural language different phrases can have the
same meaning (synonym phrases). We address this by as-
signing ontologies to abstract GUI elements and thus allow
activation of special grammars (e.g. time grammars). For
dynamic data, which is not known until runtime, we use
pattern matching to determine the ontology. Furthermore,
a thesaurus looks up synonyms. These methods are com-
bined to generate various synonym phrases for each original
phrase and are added to the SDS’s lexicon. A synonym
phrase for the GUI in Figure 2 is: “Set Next Conference to
Wednesday”.
Keeping dialogs short, the output depends on the impor-

tance of the GUI element providing the data. The user is
primarily interested in the most important fact and thus this
is read out. Less important information can be accessed by
explicit request. The significance of a GUI element is cal-
culated based on its appearance, namely size, color, and
emphasis. This means in Figure 2 the bold 2012/10/17 is
more important than Portsmouth, which results in the dia-
log: “What is the content of Next Meeting?” - “2012/10/17”.

4. EVALUATION
For evaluation purpose, we implemented our algorithms in

a prototype based on Android and the Daimler’s SDS (the
SDS provides speech understanding, dialog handling, TTS,
and simulation of an automotive head unit). As input ele-
ments can require arbitrary text, a hybrid Automatic Speech
Recognition with a local grammar-based speech recognizer
and a cloud-based dictation is used. Two smartphone apps
demonstrate the technical feasibility and application-inde-
pendence of our method (the video2 shows a sample dialog
with the calendar app). Natural dialogs and usability was
neglected and is a matter of ongoing research.

5. CONCLUSIONS AND FUTUREWORK
This work shows the technical feasibility of a semi-auto-

matic translation method from a GUI to a voice UI based
on the CRF. All functions of the GUI are accessible by
speech and are adapted to the characteristics of the speech
modality. The abstraction of a GUI to UIML guarantees
platform-independence for our translation method. How-
ever, for each platform the widget set needs to be trans-
formed into abstract GUI elements. Furthermore, using dy-
namic data ensures app-independence, but requires a data
exchange between GUI and SDS. Due to the meta speech
dialogs the voice interaction is consistent for all apps and
can be adapted to the interaction paradigm of the auto-
motive HMI. The technical feasibility and simplification of
multimodal software development has been proven by the
prototypical implementation. The next steps focus on the
user, which means task-oriented interaction with natural di-
alogs and an evaluation with user participation in which the
driver distraction, task success, and usability will be tested.

6. REFERENCES
[1] G. Calvary et al. A Unifying Reference Framework for

Multi-target User Interfaces. Interacting with
Computers, 2003.

[2] L. Paganelli and F. Paternò. Automatic Reconstruction
of the Underlying Interaction Design of Web
Applications. In Software Engineering and Knowledge
Engineering, New York, 2002.

[3] F. Paternò and C. Sisti. Deriving Vocal Interfaces from
Logical Descriptions in Multi-Device Authoring
Environments. In Web Engineering. Berlin, 2010.

[4] S. Carter et al. Dynamically Adapting GUIs to Diverse
Input Devices. In SIGACCESS on Computers and
Accessibility - Assets ’06, New York, 2006.

[5] R. Simon, M. Jank, and F. Wegscheider. A Generic
UIML Vocabulary for Device- and Modality
Independent User Interfaces. In World Wide Web
Conference, New York, 2004.

[6] Z. Sun et al. Dialog Generation for Voice Browsing. In
Building the mobile web: rediscovering accessibility?,
New York, 2006.

2youtube.com/v/gdHDhhNfvvk

Adjunct Proceedings of the 4th International Conference on Automotive User Interfaces and 
 Interactive Vehicular Applications (AutomotiveUI '12), October 17–19, 2012, Portsmouth, NH, USA

35


