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ABSTRACT
Driving a vehicle is a task affected by an increasing num-
ber and a rising complexity of Driver Assistance Systems
(DAS) resulting in a raised cognitive load of the driver, and
in consequence to the distraction from the main activity of
driving. A number of potential solutions have been pro-
posed so far, however, although these techniques broaden
the perception horizon (e. g. the introduction of the sense of
touch as additional information modality or the utilization
of multimodal instead of unimodal interfaces), they demand
the attention of the driver too. In order to cope with the
issues of workload and/or distraction, it would be essential
to find a non-distracting and noninvasive solution for the
emergence of information.

In this work we have investigated the application of heart
rate variability (HRV) analysis to electrocardiography (ECG)
data for identifying driving situations of possible threat by
monitoring and recording the autonomic arousal states of
the driver. For verification we have collected ECG and
global positioning system (GPS) data in more than 20 test
journeys on two regularly driven routes during a period of
two weeks.

The first results have shown that an indicated difference
of the arousal state of the driver for a dedicated point on
a route, compared to its usual state, can be interpreted as
a warning sign and used to notify the driver about this,
perhaps safety critical, change. To provide evidence for this
hypothesis it would be essential in the next step to conduct
a large number of journeys on different times of the day,
using different drivers and various roadways.

Categories and Subject Descriptors
H [Information Systems]: H.5 Information Interfaces and
Presentation—H.5.2 User Interfaces

General Terms
User-centered design, Affective state recognition
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1. STATE-OF-THE-ART INTERFACES
The provision of a safe and a comfortable driving ex-

perience is a major concern of motor vehicle manufactur-
ers. As the motor vehicle industry develops, more enter-
tainment and information systems are integrated in new ve-
hicles. These systems are aimed to make the driving expe-
rience more enjoyable and as safe as possible. However, a
driver is expected to focus all his attention on road events at
all times. Any activity that a driver engages in other than
that is considered to be a distraction. A study conducted
by Ranney et. al [25] shows that any form of distraction
can cause a crash. 25 percent of the police reported crashes
were due to distractions. The study classifies sources of dis-
tractions into four different categories; visual (e. g. looking
away from the roadway), auditory (e. g. responding to a
mobile phone), bio-mechanical (e. g. typing in a destination
on a navigation device), and cognitive (e. g. daydreaming or
being lost in thought).

Current car systems interfaces have a lot of disadvantages.
For instance, the driver must have previous knowledge about
the operation of these interfaces. Rydström et al. [31] re-
ported that the operation of vehicles using different systems
such as the BMW iDrive, Audi MMI or Jaguar touch screen
interface took up to four times longer to use for persons
unfamiliar with the interfaces than for the drivers know-
ing them. Additionally, the driver must pay some attention
during driving to control these interfaces, which in term is a
source of distraction. Another drawback of common driver
assistance systems (DAS) is that they get very little or no
input about the driver’s emotional (or affective) state. Very
little attention has been given for studying emotions in the
context of driving. Nevertheless, one can envision that affec-
tive interfaces might be essential in automotive safety critical
and driver assistance applications.

In an attempt to research alternative automotive inter-
faces, we thought about investigating the relationship be-
tween the driver’s affective state and routes that are being
regularly driven by him. The idea was inspired by the fact
that different people feel and react differently to different
roads at various times of the day. For example, we assume
that most people will feel more stressed on a road with more
traffic jams than a road that has a moderate traffic flow.
In this paper we investigate our hypothesized claim. We
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present our first experiments using physiological data ac-
quired from electrocardiography (ECG) and location data
obtained using a global positioning system (GPS) device.

1.1 Attention-free Driver-Vehicle Interaction
Current vehicular interfaces are operating on a combina-

tion of either haptic, visual, or vocal modalities (Mauter
and Katzki [19, p. 78], Bernsen [4, p. 2], Riener [26, p. 61f.]).
These interfaces require a lot of knowledge and attention
from the driver in order to interact with different car sys-
tems. Furthermore, there has been no or only little informa-
tion considered about the affective state of the driver which
can be gathered almost for free. Feeding the driver’s affec-
tive state into different vehicular control systems might help
to provide many possibilities for new vehicular applications
dealing with safety, information, navigation, and entertain-
ment. In a study conducted by Green [10], the following rec-
ommendations are made to help overcome crashes induced
by in-car information systems:

(i) application and extension of driver interface reg-
ulations and design guidelines,

(ii) utilization of human factor experts, data, and
methods to develop new driver-vehicle interfaces,

(iii) making greater use of usability testing,

(iv) conduction of research on and development of a
workload manager which measures driving de-
mands of a road required from the driver.

These are very important remarks that indicate that a lot
of research work is yet to be done for improving the safety
and usability of driver-vehicle interfaces.

As pointed out before, cognitive distractions can make the
driver prone to accidents. Moreover, one can state that the
emotional state of the driver falls under the category of cog-
nitive distractions. Studying the driver’s emotional state in
relation to driving performance had an increasing interest
from several researchers. Grimm et al. [11] researched on
the importance and feasibility of detecting the driver’s emo-
tional state. The assumption of their study, based on cited
evidence, is that different emotional states affect driving
performance. Some of the emotional states were described
as being positively improving the driving performance, and
others as adversely affecting. A similar study was done by
Cai et al. [17] on the feasibility of detecting driver emotions
using driving simulators. Other studies by Nass et al. [21],
Jones et al. [13], and Jonsson et al. [14] showed evidence
that automotive safety can be improved by pairing an in-
car voice interface output with the emotional state of the
driver. Wang and Gong [34] showed the feasibility of emo-
tion recognition in vehicular environments. In the study
a driving simulator was used to elicit various emotions us-
ing driving courses and guidance voices. Most studies in
this area claim that little attention has been given towards
studying emotions encountered by drivers throughout the
driving process.

Outline
The paper is organized as follows. In section 2 an overview
of related work in emotion research and a short background
on ECG is presented, in section 3 we present the experi-
mental setting, conducted studies and a discussion of initial

results. Finally, section 4 concludes the work and gives some
directions for our future research.

2. AFFECTIVE STATE RECOGNITION

2.1 Emotion Research
To the best of our knowledge, there exists no scientifically

agreed on definition for the notion of emotions. Finding an
accepted working definition of emotions is an important is-
sue and still under research. Understanding emotional com-
ponents and their generation are made difficult by a lot of
factors; describing emotions (or tagging emotions with ad-
jectives) and interference problems (due to social pressures
and expectations) are some of these factors.

The widely used definition for emotion recognition in com-
puter disciplines was introduced by Picard [23] in the 1990s.
Emotion recognition is defined as “measuring observations
of motor system behavior that correspond with high probabil-
ity to an underlying emotion or combination of emotions”.
This definition is based on the fact that measuring cogni-
tive influences is currently impossible. Nevertheless, we are
able to measure physiological responses that can reflect an
emotional state. This definition of emotion recognition sim-
plifies the problem of understanding what an emotional state
is. Furthermore, it is suggested to use the terms “emotional
state”, “affective state”, and “sentic state” interchangeably
in the context of emotion reasoning and computation.

Body Expressions
Affective computing is not aimed at measuring cognitive in-
fluences but to detect emotions from what is referred to as
“sentic modulation”. The body expresses (or modulates) an
emotional state through many channels. What to be con-
sidered as a reliable source for understanding sentic expres-
sions seems to be also debatable. A variety of motor system
outputs and physiological responses have been studied with
respect to emotional influence. Categorization of the main
classes or the reliable sources for the purpose of emotion
recognition is still debatable. Mauss and Robinson [18] clas-
sify the widely investigated channels as follows:

(i) facial expressions and whole body behavior,

(ii) vocal characteristics using features like quality,
utterance timing, and utterance pitch contour,

(iii) physiological responses and other motor outputs
(arising from biosignals like heart rate, blood vol-
ume pressure (BVP), pulse, pupillary dilation,
respiration, skin conductance, and temperature),

(iv) subjective experience (based on self report).

Various interpretations and definitions from disciplines like
psychology and philosophy are given about the notion of
emotions. The recommended definition by Picard gives us
a stricter domain for understanding emotions in the field
of computer science. Given this definition we need to un-
derstand (i) what are the causes for emotions or emotion
elicitation, (ii) what are the channels for expressing emo-
tions, and (iii) how to measure emotional responses. We
also need a computational model for interpreting the mea-
sured responses. Two of the widely used models in emo-
tion research are the discrete emotion model (a basic set of
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emotions are assumed), see Zinck et al. [35, p. 2], and the
dimensional model (describes different categories of emo-
tions in three or fewer dimensions; such dimensions include
arousal, valence, and control/attention), see Sebe et al. [32]
or Barrett [2]. Arousal indicates the strength of the emo-
tion (calmness/excitement), valence shows the pleasantness
of an emotion (positive or negative), and control/attention
addresses the internal or external source of emotion. Nev-
ertheless, the names of the dimensions vary across the liter-
ature. For the convenience of mapping dimensional models
to discrete emotions, Russel [30] proposed a model which is
widely used by researchers in this area.

Emotion Recognition from Biosignals
Facial expressions and the voice are bodily signals that we
can control. Emotions that are being conveyed through
these channels can be deceiving as they can be faked by the
person. For example, think about how good actors can show
certain emotions in films or in the theater. Although emo-
tions appear to be realistic, their truthfulness is debatable.
The other problem with relying on such signals is the setup
needed for data acquisition. Such setups rely on sensors like
cameras or microphones which are, particularly in the car,
constrained by factors like placement and environment con-
ditions (like lighting, background noise, etc.), see Riener [26,
p. 93f.]. For this reason, researchers currently tend to inves-
tigate other signals that can also convey an affective state
such that a person can have less influence on. Such signals
are commonly known as biosignals (or physiological signals)
and, according to Benovoy et al. [3], are believed to provide
more reliable means for determining emotions.

Biosignals are widely related to the autonomic nervous
system (ANS), the limbic system, and other parts of the
central nervous system (CNS). These systems are respon-
sible for controlling a lot of vital activities and involuntary
muscles, and are furthermore known to respond to emotional
stimuli. Despite the fact that a lot of sensors exist for the
acquisition of biosignals, the usage of data from such sig-
nals for emotion recognition is neither an easy nor a direct
task. In relation to other approaches there are no “golden
rules” yet established for the usage of biosignals for emotion
recognition.

2.2 Electrocardiography (ECG)
The ANS controls smooth muscles, cardiac muscles, and

secretions from various glands. Two branches of the ANS are
the sympathetic and the parasympathetic system. The sym-
pathetic system is needed for “fear, flight, fright” response
(high arousal state). It is responsible to prepare the body
for a stressful condition. The parasympathetic system works
in the opposite way. It is responsible to put the body in a
“calmer state” (low arousal state). For the normal activity,
a balance is maintained between the sympathetic and the
parasympathetic activities. Such variations of ANS activity
can be measured using several channels. The following list
by Mendes [20] represents a summary of the most widely
used noninvasive methods for measuring ANS activity:

(i) electrodermal activity using skin conductance and
skin potential,

(ii) cardiovascular activity using electrocardiogram,
impedance cardiography, blood pressure, respi-
ration,

(iii) pupillary responses (measurement of pupil diam-
eter),

(iv) skin temperature,

(v) skin blood flow (volume of blood flowing in skin).

Cardiovascular activity has been used by a lot of researchers
in emotion research and related fields [16, 29, 5, 28, 8, 24,
33, 12]. Electrocardiography (ECG) is one of the most com-
mon ways of measurement. The ECG records these car-
diac electrical currents (voltages, potentials) by means of
metal electrodes placed on the body (the recording is visu-
alized by means of an electrocardiogram). Normally, the car-
diac stimulus is produced in the sinoatrial (SA) node, that
is present in the right atrium (RA). The stimulus then is
passed through the RA and left atrium (LA). After that the
stimulus is passed through the atrioventricular (AV) node
and the bundle of His. The stimulus then passes into the
left and right ventricles (LV and RV) by way of the left and
right bundle branches. Finally, and according to Goldberger
et al. [9], the stimulus is transferred to the ventricular muscle
cells.

For normal cases the process of cardiac stimulus generates
patterns as shown in Figure 1. The time interval between
two heart beats can be calculated by observing the time be-
tween two consecutive R peaks using a QRS detector. This
R-R interval is known as the inter-beat time and is used for
the measurement of the heart rate.

Heart Rate Variability (HRV)
On the shortest time scale, the time between each heart-
beat is irregular (unless the heart is paced by an artificial
electrical source such as a pacemaker or due to medical con-
ditions). An important tool to measure this irregularity is
heart rate variability (HRV). HRV is a promising tool for ap-
plications involving medical diagnoses and stress detection.
Kim et al. [15, 5] have reported the use of HRV statistics
as to estimate mental stress. This can be applied to vehic-
ular applications where the estimation of emotional state is
required.

The tool relies on the analysis of the series of R-R interval
differences. Time and frequency domain measures provide
means for HRV analysis. Measures of time domain include
mean, standard deviation, and root mean square of differ-
ences of consecutive R-R intervals. Frequency domain analy-
sis represents deviations with respect to frequency. For that,
several interesting frequency bands can be analyzed like the
very low frequency (VLF) (< 0.04Hz), low frequency (LF)
(0.04 − 0.15Hz), and high frequency (HF) (0.15 − 0.4Hz).
VLF was indicated as being unreliable for short time inter-
vals. The LF/HF ratio is an indicator for autonomic bal-
ance. High values are thought to indicate the dominance of
sympathetic activity with vagal modulation and low values
indicate dominance of parasympathetic activity. Typically,
HRV analysis is done for time windows of 5 minutes or for
longer periods like 24 hours. However, there is no stan-
dard mentioned for an ideal time window frame (Clifford
et al. [6, p. 71–83]). For a dimensional model of emotions,
this parameter could be a good indicator for arousal but not
valence.

Mobile ECG Measurement
One might think that the measurement of ECG can be very
tedious as compared to a setup available in hospitals which
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is mostly based on a standard 12-lead ECG. Today most
mobile ECG devices used for measuring heart (or pulse)
rate, heart rate variability and other biorhythm related pa-
rameters operate with three conductively coupled electrodes
(“Einthoven ECG”), attached to the skin of the person and
providing direct resistive contact (see Figure 2). But also
their application in vehicles is almost unfeasible due to the
inconvenience and lack of user friendliness (even the “ulti-
mate”DASs necessitating the driving person to attach three
electrodes every time prior boarding would not be accepted).

However, using a system operating on capacitively cou-
pled electrodes, as for instance presented by Aleksandrowicz
et al. [1], could avoid these restrictions. The introduced sys-
tem is able to measure ECGs through the clothes, without
a direct skin contact. Although the measurement system is,
compared to a conventional conductive ECG measurement
device, more sensitive to moving artifacts and is furthermore
strongly dependent on the subject’s clothing, it seems useful
for at least high convenient heart rate detection in mobile
fields of application. The measurement device additionally
avoids skin irritation often evoked by the contact gel between
skin and the electrodes. The proposed capacitive measure-
ment system could be for example integrated into a vehicle
seat with two electrodes embedded into the back, and the
reference electrode integrated into the seat. This system
would then operate fully autonomously and attention-free,
and thus would be the missing building block for the class
of implicit operating sensing systems.

QRS
complex

R-R interval (inter-beat time)

P
T

R

Q
S

QT interval

PQ complex ST segment

R

Figure 1: A normal electrocardiogram.

3. FIELD TESTS
In order to study the relationship between the driver’s

emotional (or affective, arousal) state and a driven route
and to test the proposed framework, we conducted experi-
ments measuring pairs of ECG/GPS for a specific route and
a fixed daytime (a small variation in driver time is indispens-
able according to environmental parameters such as weather
or traffic jams). Based on this data a“personal affective pro-
file” for a route and a specific daytime can be compiled, in-
dicating the “normal, balanced” state of that person for each
position on the (regularly driven) track (=training set). The
assumption of the research is that differing affective state
values identified during a trip (testing set) represents some
kind of abnormality and should be immediately forwarded to
the driver as a kind of proactive notification to avoid danger
situations.

A second field of application for the emotional profiles
would be the utilization for any service provider. For in-
stance, streets or road segments can be classified according
to the arousal state of the collection of all drivers using this
road on a certain day or at a certain time of the day regularly
in order to identify the “danger-level” (or “stress-impact”) of
a route. For a car insurance company the aggregated state
values could be used to calculate the insurance rate for this
trip.

3.1 Geographic Regions of the Experiments
The on-the-road driving tests have been conducted in the

greater Linz area. In order to avoid the general areas of traf-
fic congestions, two different driving routes (inbound via the
city of Altenberg, outbound via Glasau) – according to the
personal preference of the test person – have been used for
data acquisition. All of the test runs have been processed
on these predefined courses with a distance of 20.47km (in-
bound) and 19.53km (outbound). Figure 3 illustrates maps
of the routes driven in the experiments.

3.2 Data Acquisition
GPS traces and ECG data have been acquired in on-the-

road experiments on two predetermined routes (morning and
evening route) driven by a single identical person for a period
of two weeks (the subject was commuting from his home to
work; we only consider the workdays in our experiments). A
total of 22 trips with more than 500 kilometers driven were
logged and employed in this research study.

For recording electrocardiograms we used a common 3-
lead ECG device “HeartMan 301” from HeartBalance AG1.
This appliance can be easily attached to a human’s body, is
small-sized, light-weight and records up to 24 hours with one
battery pack. Figure 2 illustrates the setup of the device on
the subject. The device operates reliably and delivers high
precise data in real-time at a sampling rate of 50Hz. Data
sets are either transmitted via a Bluetooth communication
interface or stored in the European data format (EDF)2 on
an integrated SmartMedia memory card.

Figure 2: A 3-lead mobile ECG device “Heartman
301” attached to the test driver.

A GPS receiver ATR062x3 with ANTARIS 4 GPS chipset,
mounted nearby the front window, was used to get the vehi-
1http://www.heartbalance.com/hb2/index.php?
content=home, last retrieved July 30, 2009.
2http://www.edfplus.info/, last retrieved July 30, 2009.
3For details on ANTARIS 4 GPS Chipsets and Sin-

Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications 
                                              (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany

102



Figure 3: GPS traces of the two pre-defined driving routes with subjacent maps. Tthe left image shows the
morning journey (20.47km), the right one indicates the evening trip (19.53km).

cle geo-locations. The ATR062x is optimized for automotive
and mobile terminal applications. GPS data is logged in the
National Marine Electronics Association (NMEA) 1083 for-
mat at a rate of 1Hz. Furthermore, the GPS time field was
consulted as external synchronization basis.

3.3 Signal Processing and Feature Extraction
The ECG signal was preprocessed with a high-pass filter

of 1Hz followed by a low-pass filter of 1, 000Hz. For the next
processing steps we used BioSig4(an open source toolkit for
biomedical signal processing) in Matlab. In the beginning we
analyzed the dataset mapping between raw ECG and GPS
logs but no significant correlation was noticed. Therefore,
we decided on using HRV analysis. In order to calculate
the R-R interval series, we first must detect the R peaks
throughout the entire ECG signal. For that we used a QRS
complex detector provided by the toolkit and as described
by Nygards et al. [22]. The detector returns the fiducial
points of R peaks. We then used the integrated heart rate
variability toolkit to calculate the LF/HF ratios as an index
for autonomic balance.

GPS data was converted from the NMEA format to a sim-
plified comma separated values (CSV) file format. This was
done using GPSBabel5 (an open source toolkit for the con-
version between multiple GPS device formats). Transformed
data consisted of the car latitude, longitude, speed, course,
and a time stamp. The time needed to travel a route varied
every day. This is due to factors like driving speed, road
conditions, and traffic congestions. Therefore synchronizing
data based on exact time was not possible.

In order to overcome the synchronization problem, ref-
erence routes for the morning and the evening trips were
defined. These reference routes were manually plotted using
Google Earth6. Moreover, we had to choose a good time

gle Chip GPS Receivers see http://www.u-blox.com/
products/a4chipsets.html, last retrieved May 13, 2009.
4The BioSig Project, URL: http://biosig.sourceforge.
net/, last retrieved July 30, 2009.
5GPSBabel, URL: http://www.gpsbabel.org/, last re-
trieved July 30, 2009.
6Google Earth, URL: http://earth.google.com/, last re-
trieved July 30, 2009.

window for segmenting and analyzing the data. We experi-
mented with several time window sizes ranging from 1 to 5
minutes. The least time window we can use, that provided
us with the best resolution, was 60 seconds (since a journey
lasted between 20 to 30 minutes, a large time frame was not
able to provide us with variations of LF/HF ratios over dis-
tance). With a time window of 60sec., the lowest frequency
that can be resolved is 1/60 = 0.016Hz which is below the
lower limit of the LF region. The highest frequency that can
be resolved is calculated by applying the Nyquist constraint
of N/2T >= 0.4, where N is the number of beats and T is
the time in seconds [6, p. 79]. Applying this formula leads to
a lower limit of N = 48beats. Our subject is a healthy adult
with an average of 75 beats per minute (bpm), and since we
are interested in analyzing the LF and HF bands this time
window choice was appropriate.

The distance ranges (with respect to the final destination)
traveled within every division were stored along with the
corresponding LF/HF ratio. By the end of the experiment
we had different distance ranges of 60secs. overlapping with
each other. Finally, to calculate the corresponding LF/HF
ratios of any point of the route the following was done. The
distance ranges in which a route point falls were first de-
tected (the distance of a point to the final destination was
calculated and the corresponding ranges which it falls in
were known by a simple comparison). Figure 4 illustrates
the various 60 second ranges for a driver on two different
days. Given the known ranges and the LF/HF pairs, the
corresponding LF/HF ratio of a point was the mean of the
LF/HF ratios across the ranges.

3.4 Discussion
After collecting and processing the datasets, we visualized

the aggregated LF/HF ratios along the routes. This was
done by means of a quantitative visualization on Google
Earth (an illustration of the morning route visualized can
be seen in Figure 7) over the driven tracks, and as simple
graphs generated by Matlab. Figure 5 and Figure 6 show
the corresponding ratios in relation to the distance to desti-
nation of the morning and the evening journeys respectively.
As described before, we use LF/HF ratios as indicators for
autonomic balance. Higher values are thought to exhibit
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Figure 4: Morning route distance ranges and corre-
sponding LF/HF ratios for two days.
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Figure 5: Morning route distance ranges and aggre-
gated LF/HF ratios for two weeks.

higher levels of arousal (implied by increased sympathetic
activity) and lower values are opt to demonstrate lower lev-
els of arousal (as a result of the dominance of parasympa-
thetic activity).When calculating the mean of LF/HF ratios
for a span of two weeks, we get a characteristic gradient of
the curves as depicted in the figures. After analyzing the
routes driven and the ratios we came to some interesting
observations. In fact we have no means to proof the rea-
sons behind the phenomenon in the data. However, we try
to give reasons that might be likely to exhibit the observed
measurements. The analysis is done based on road charac-
teristics noted throughout the experiment.

HRV is known to vary according to age, gender, activ-
ity, medications, and health [6, p. 71]. It is rather unclear
how to differentiate between this causes, e. g. when driving
at high speed. Therefore, it is not clear whether the high
LF/HF ratios are caused by an increased mental load (at-
tention on the road) or the raised activity of steering the
vehicle (braking and accelerating, changing gears, steering).

The Morning Journey
At the beginning of the journey (morning, starting from
home) the level of arousal is with a value of 2.6ms2 rela-
tively low. The value increases for a short time, probably
caused by several dangerous road crossings, and decreases
again while driving at low speed in the municipality. The
following section (from kilometers 2 to 4), driven on an in-
terurban road with a speed limit of 100km/h, directs to an
LF/HF ratio between 2.5 and 3.3ms2. Similar curve shapes
can be indicated for the other interurban road sections on
the route (regions from kilometers 9.0 to 10.5 and 11.5 to
13.0). The region 4.5 to 6.0 corresponds to the city of “Hell-
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Figure 6: Evening route distance ranges and aggre-
gated LF/HF ratios for two weeks.

monsödt”, driven at a speed limit of 50km/h. The 8km
mark between the city “Hellmonsödt” and the small town
“Pelmberg” (long straight street section through a forest)
corresponds to the lowest value of arousal for the entire trip
(1.7ms2). The road there has very light traffic at that time
of the day. The most significant road segment is the dis-
tance from kilometers 17.0 to 18.6, the state of arousal here,
varying between 4.2 and 4.8ms2, is much higher than in any
other region of the curve. The reason for this is probably
the incipient traffic congestion (dense traffic, but vehicles
are still moving) on the borders of Linz (inbound). Driv-
ing on workdays and at the same time each day (at around
7:30AM) a traffic jam (standstill) will appear every day be-
tween the kilometers 18.6 and 20.1. This behavior is also
noticeable in the Google Earth representation in Figure 7
(please note that the labels of the bar graph stands for the
LF/HF value scaled by a factor of 1000 – due to a restric-
tion of the utilized software tool). The final segment (low
to very-low LF/HF ratio) is driven at walking-speed on the
university parking lot, which is almost empty at this time
(neither cars nor pedestrians/students).

The Evening Journey
The LF/HF ratios for the evening route fundamentally fol-
low that of the morning route. The first 1.5km of the route,
indicated by a very low state of arousal around 2ms2, are
driven on the parking lot and a following 30km/h zone. It
is connected to a common “city-traffic” region (route kilo-
meters 2.0 to 6.5), showing a high LF/HF ratio of up to
3.6ms2. The reason for this is probably due to city traf-
fic (outbound, around 6:30PM, high traffic density but in
general no traffic jam). The region of 7.5 to 12.0km indi-
cating the lowest LF/HF ratio is represented by permanent
road works (50km/h zone, narrow roads), but at the time
of driving regular work has already been stopped for the
day. The remaining route (kilometers 12.0 to 19.53) shows
no more distinctive features. It can be mentioned that the
apex at the end of the route (at kilometer 19.3), where the
value of arousal increases from 1.8 to 3.2ms2, might be due
to a number of hazardous curves that require maneuvering
just before reaching the end point.

4. CONCLUSION AND FUTURE WORK
It is undoubted that the cognitive workload of a car driver

is increasingly demanded by modern vehicular interfaces and
driver assistance systems. The consequence is a possible
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Figure 7: Visualization of the morning route using
Google Earth. The values are representations for
the arousal state of the driver.

threat, mainly caused by distraction (from the task of driv-
ing) due to information overload. In this study we have
investigated the proof-of-possibility for the application of
heart rate variability (HRV) analysis for representing the
driver’s affective state in terms of autonomic arousal levels
in a noninvasive and a non-distractive way. The experiments
we conducted lasted for 2 weeks using one driver commut-
ing every day from his home to work place. We calculated
LF/HF values from ECG data, partitioned them into 60sec.
segments, and mapped them to the corresponding GPS co-
ordinates. This curve, denominated as “personal affective
profile”, can be used to identify differences for further trips
of that driver on the same route in order to notify him (or
the driver assistance system) of that change.

In short, the results of the initial tests can be summarized
as follows.

(i) The here presented and used metric is only a good
measure for arousal. For emotion recognition a metric
for representing valence is still required.

(ii) A disadvantage of using ECG (or in particular HRV)
is that we had to take larger time intervals (we used
60sec. segments). For realtime applications this would
be unfeasible (a measure with a quicker response will
be needed).

(iii) We presented the potential for using one type of biosig-
nals (ECG) as an indicator for arousal. We might con-
sider comparing it to other ANS measures in future
studies.

(iv) Using an ECG device with a sampling rate of 50Hz
was not feasible for usage with advanced ECG analysis
techniques in short time intervals.

(v) We cannot back our observed phenomenons in relation
to the road characteristics with a proof. Nevertheless,
the stated observations are only remarks on what we
think is significant.

(vi) The subject was not feeling stressed during the exper-
iment, which indicates that the LF/HF ratios can be
used as an indicator for subconscious stress.

(vii) Higher arousal levels were noticed at roads of higher
traffic volume.

As our research is still in progress, a lot of issues are still
open and should be covered in the future. Our focus of
research will be segmented into two directions. One part
is aimed to continue the recording of ECG/GPS data on
different driving routes with a larger number of recordings
each (e. g. ≥ 10). For these tests it is planned to integrate,
apart from ECG and GPS, other biosensors to improve data
set quality. We will then repeat the conducted on-the-road
studies for a certain driving route with at least one different
driver in order to provide evidence for person-related dif-
ferences. In addition to the “real” driving studies we will
conduct tests on a predefined simulated track, e. g. by using
a trace-driven experiment as described in [27] or a driving
simulator. On the other hand, but concurrently in time, we
will use more effort in the mapping of data and selection
of algorithms with respect to improving the computational
model for emotion representation and interpretation.
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