In-vehicle UI standards

Paul Green

University of Michigan

Tutorial at:

4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Automotive UI 2012)

> Portsmouth, New Hampshire, USA, planet Earth October 17, 2012

There are 5 basic questions to be examined.

- 1. What kinds of documents guiding and requiring vehicle testing and design exist?
- 2. What is in a typical standard?
- 3. How does one find them?
- 4. How are they created and how does research have influence their content?
- 5. Which standards exist that affect driver interface and driver assistance systems?

US DOT (FMVSS, visual manual guidelines, NCAP)

ISO

SAE

ITU

The terms used to refer to standards and related documents have different meanings.

Information Report

Recommendation (Design, Technical, etc.)

Recommended Practice

Guideline

Best Practice

Consensus Practice

Rule

Standard

Requirement

Specification

Code of Practice

Regulation (executive branch)

Law (legislative branch)

"Standards" differ on several dimensions.

Who creates it and their process government, SDO, any organization who has input

National vs. International

Availability (public vs. secret)

Design, Performance, Process bumper example, outlet example

Criteria

Authority (should vs. shall/must)

Enforcement (type approval)

Corolla & RAV4

What is in a typical standard?

Example: SAE Recommended Practice
Navigation and Route Guidance Function Accessibility
While Driving (SAE J2364), 2004
(aka "15 second rule")

Obtaining standards is not easy and is costly.

document is in the SAE Handbook (often found in an engineering library)

purchase from SAE 13 pages (\$65, SAE member \$52 to \$58.50)

3 volumes 1800 standards \$625/\$500

There is usually a 1 paragraph introduction that says why the standard is needed.

Introduction

Navigation and Route Guidance Systems have some functions that can take significantly more time to use than conventional controls and displays such as the headlights, windshield wipers, ... (Kurokawa,...)Consequently, there are concerns that interacting with navigation and route guidance systems could unduly distract drivers ...

The scope describes what the standard covers and, sometimes, what it does not cover.

This ... applies to both <u>Original Equipment Manufacturer</u> and <u>aftermarket</u> route-guidance and <u>navigation system</u> functions for <u>passenger vehicles</u>. It establishes ... which navigation functions should be accessible to the driver while the vehicle is <u>in motion</u>. These methods apply only to the presentation of visual information and the use of manual control inputs ...

The ... Practice does <u>not apply to visual monitoring</u> tasks ... such as route following. <u>Voice-activated controls or</u> passenger operation of controls are also excluded.

You may also need copies of the normative references (referenced requirements), several of them.

Normative References for J2364

J287 Driver Hand Control Reach

J1050 Describing & Measuring the Driver's Field of View

J2396 Driver Visual Behavior Using Video Based Techniques

J2365 Calculation of the Time to Complete In-Vehicle Navigation and Route Guidance Tasks

Example:

Accessible = within reach of the unconstrained driver as defined by SAE J287; and 2. the display is visible with head movement as defined by SAE J1050; and ...

Also, numerous definitions (17 in J2364); definitions stds.

J2364 specifies 2 methods. Use 1.

Static Method - ... a sample of subjects, after practice, completes each task of interest several times using a stationary vehicle ... with a functioning or simulated driver interface. .. The total time .. is ... from the time the subject begins the task until the task is completed.

Interrupted Vision Method - ...

Details are omitted here to save time.

Open 1.5 s, closed 1.5 s

The procedure is quite detailed.

Operational hardware in design location

Subjects (10) must be

- * Licensed drivers not familiar with, or technically knowledgeable about, the specific driver interface under investigation
- * Capable of operating the ... interface ... & completing the test
- * 45 to 65 years of age

Prior to testing, each subject shall be trained in the use of the driver interface and the task ... Following training ... each subject will be given 5 practice trials for each task prior to testing.

This standard has criterion. Many do not.

Total task time sum of log of times < log 15 task < 5 s is excluded

Interrupted vision sum of log of shutter open time < log of 20

Who develops standards and how

The U.S. (federal) government follows the Administrative Procedure Act.

All executive departments and independent agencies covered

HF related regulations/rule making examples

CPSC	toys, jet skis, off-road vehicles
DOL - OSHA	machine guarding, ergonomics
DOT FAA	hours of service
DOT FMCSA	control tower ops, aircraft spacing, passenger evac.
DOT NHTSA	driver distraction
FDA	medical devices, drug labels
NRC	plant design (control room, work standards, etc.)

How I think the Admin. Procedure Act works.

- 1. Internal agency discussion (gather data, authority (Congress can request & fund), no organizational conflict, ...)
- 2. Notice of Proposed Rulemaking (NPRM, Federal Register)
- Responses from anyone (companies, individuals, trade assn.)
- 4. Comment summary published (Federal Register)
- 5. Notice of public hearing (Federal Register, anyone can present, usually DC)
- 6. Modify rules & feedback
- 7. Publish of final rule (Federal Register)
- 8. Often legal action

years to get input & reach agreement other governments may be different

Recognized standards development organizations have an open process, utilize recognized technical experts, avoid conflicts of interest, and work to build a consensus.

The International Standards Organization (ISO) is the largest standards development organization. (iso.org)

264 Technical Committees

Examples:

JTC1 - Information technology

TC8 - Ships and marine technology

TC17 - Steel

TC20 – Aircraft & space vehicles

TC22 - Road vehicles

TC34 – Food products

TC45 – Rubber and rubber products

TC61 - Plastics

TC159 - Ergonomics

Every technical committee has a secretariat (country/org that manages it), a convener (technical leader = chair) and many subcommittees.

ISO TC22 Road Vehicles (AFNOR)

19 subcommittees, 7 working groups, ~20 liaisons (TC204 – ITS)

Examples

SC1 – ignition equipment

SC2 – braking systems and equipment

SC3 – electrical and electronic equipment

SC9 – vehicle dynamics and road handling ability

SC11 – safety glazing materials

SC12 - passive safety crash protection systems

SC13 - Ergonomics applicable to road vehicles

SC17 - visibility

ISO Technical Committee 22/Subcommittee 13 (ISO TC22/SC13) Working Groups

WG 3 – Localization of controls and tell-tales

WG 5 – Symbols

WG 7 – Hand reach & R & H point determination

WG 8 – TICS on-board – MMI (telematics)

Working groups & subcommittee meetings ~ 1 week, twice / yr Location varies (Paris, London, Munich, Stockholm, Turin, ...)

Convener = John Shutko SAE has secretariat, reports to

Members & membership fees

Standards of Interest to the Automotive User Interface Community (ISO TC 22/SC 13/WG 8)

Document	Abbreviated Title
Std 15005: 2002	Dialogue management principles and compliance
Std 15006:2011	Auditory information specifications and compliance
Std 15007 (2 parts)	Visual behavior measurement
Std 15008:2009	Legibility
Tech. Rep. 16352: 2005	Warnings literature review
Std 16673:2007	Occlusion method to assess distraction
Trial Std 16951:2004	Message priority
Std 17287:2003	Suitability of interfaces while driving
Std 26022:2010	Lane change test to assess distraction

The ISO Process (Road vehicle ergonomics) TF>WG>SC>TC

national delegation requests a standard on some topic
NWI (New Work Item) discussed at several WG meetings
If >1/2 SC/TC P approve & 5 commit then NP (New Project)
NWI (New Work Item), TF (task force), 3 yr clock starts
TF meets every 6 months & drafts standard (report up)

TF
$$\longrightarrow$$
 WG \longrightarrow SC \longrightarrow TC \longrightarrow ISO \longrightarrow publish
CD FDIS edit
DIS

Who are the delegates (#, expertise, employers, long-term) What happens in meetings (language, UN, technical/politics), Who votes & comments on what

See: http://www.iso.org/iso/home/standards_development.htm

How does research influence the content of standards? Availability & amount matter (0, 4-5, >10 publications).

Initial consideration by authors in working group
do they know about the research prior starting standard
send key people copies
send the committee copies -> assigned a document #
can they find it when search the internet
include the standard name and # in keywords in research
include the standard in the article/report reference list

Review process

does a reviewer or committee member say to include an article or report as a reference

How to find human factors/ ergonomic standards

- 1. Use the ppt from this presentation!
- 2. Look at standards development organization (ISO, ITU, SAE, etc.) web sites
- 3. Use Google only as a last resort. unlikely to be found by Google you may not know the terms to use

TC 20	Management of fluid flavorin alanad sand	published	
TC 29	Small tools 73	5 standards	4
TC 28	Petroleum products and lubricants	TC 28 home	246
TC 27	Solid mineral fuels	C 27 home	104
TC 26	Copper and copper alloys	TO 6 home	38
TC 25	Cast irons and pig irons	TC 25 b me	16
TC 24	Particle characterization including sieving	TC 24 home	54
TC 23	Tractors and machinery for agriculture and forestry	TC 23 home	335
TC 22	Road vehicles	TC 22 home	735
TC 2	Equipment for fire protection and fire fighting	TC 21 home	97
TC 20	Aircraft and space vehicles	TC 20 home	556
TC 19	Preferred numbers - STANDBY	TC 19 home	3
TC 18	nc and zinc alloys - STANDBY	TC 18 home	11
TC 17	Ste 5. Click on TC 22.	TC 17 home	313

So, usually you need some guidance from a standards expert about what is in each standard, and a friendly librarian who will buy the standards.

ISO driver assistance & warning documents (TC 204, Intelligent Transportation Systems)

Document	Abbreviated Title
Std 15622:2010	Adaptive cruise control (ACC) performance requirements and tests
Std 15623:2002	Forward vehicle collision (FCW) warning performance requirements and tests
Std 17361:2007	Lane departure warning (LDW) systems performance requirements and tests
Draft Std 17387:2008	Lane change decision aid systems (LCDAS) performance requirements and tests
Std 22178:2009	Low speed following (LSF) systems performance requirements and tests
Std 22179:2009	Full speed range adaptive cruise control (FSRA) systems performance requirements and tests
Draft Std 22839	Forward vehicle collision systems—Operation and performance, requirements
Std 22840:2010	Extended-range backing aid systems (ERBA)
CD 26684	Cooperative intersection signal information and violation warning systems (CISIVWS)

US Department of Transportation (US DOT),
National Highway Traffic Safety Administration (NHTSA),
Federal Motor Vehicle Safety Standards (FMVSS)
Most relevant examples for automotive UI

http://www.nhtsa.gov/cars/rules/import/fmvss/index.html

101	Controls and displays	
111	Rear view mirrors	
125	Motorcycle controls and displays	

Others concern windshield wiping, brake hoses, tires and rims, roof crush, side impact protection, child restraints, etc. (~54 total)

Finding the NHTSA Visual-Manual Guidelines

("voluntary" NHTSA Distraction Guidelines)

Search regulations.gov for docket NHTSA-2010-0053 Gives document, comments, notices, of hearings, etc. (125 documents)

Document = NHTSA-2010-0053-0009 www.regulations.gov/#!documentDetail;D=NHTSA-2010-0053-0009

Outline of NHTSA Visual-Manual Guidelines

Executive summary

Background and why

NHTSA research on measurement methods

Current distraction guidelines

Justification for sections in NHTSA guidelines

Examples: Vehicle types, devices, tasks, lock outs, steering wheel controls, downward viewing angle, tests to consider, eye glance criteria, subject selection, occlusion protocol, errors

The guidelines

Methods Preferred by NHTSA

Method Name	Acceptance Criteria
EGDS = Eye Glance	85% of glances < 2.0 s
Driving Simulator	Mean glance < 2.0 s
	Total glance time < 12.0 s
OCC = Occlusion	Total shutter open time < 9 s

Other Methods Mentioned by NHTSA		
Step	# task steps<6	
DS-BM=Driving Simulator with Benchmark	SD gap, 3 lane departures<=benchmark	
DS-FC=Driving Simulator w/Fixed Acceptance Criteria	Performance measures<=acceptance values	
DFD-BM=Dynamic Following in Driving Simulator with Benchmark	EGDS glance criteria + performance <benchmarks %="" (perform.="" car="" delay,="" detected,="" following="" incl="" response="" sdlp,="" targets="" td="" time<="" visual=""></benchmarks>	
DFD-FC=Dynamic	Same as DFD-BM with fixed	

NHTSA Requirements for Subjects

acceptance criteria

Following in Driving

Simulator with Fixed Criteria

Women	Men	Age Range
3	3	18-24
3	3	25-39
3	3	40-54
3	3	>55
12	12	

[&]quot;The lower limit, 18 years of age, is due to concerns about testing with minors."

[&]quot;organizations may set an upper age limit (such as 65 years old) ... if they can easily find ... participants and they have health concerns about testing with elderly test participants."

NHTSA Occlusion Test Protocol

Device in realistic location (fitted in buck or mockup)

Subjects are trained

Test per ISO 16673 (shutter open for 1.5 s, closed for 1.5 s)

Start: Experiment triggers start when subject is ready

End: when subject says done

Min of 1 practice and 1 test trial / subject

Computer records # open intervals

21/24 subjects must complete task in <= 6 open intervals (= 9.0 s open time)

NHTSA Eye Glance-Driving Simulator Protocol

Simulator	Screen min 6.8 ft w x 4.5 ft h at >=15.4 ft (25 deg FOV, seems small) Record at >=30 Hz, Lag <=0.1 s inputs (steering wheel, brake pedal, throttle), vehicle (orientation and position, lane position, speed, lateral and longitudinal acceleration), gap Max 0.1 sec lag
Scenario	Undivided 4 lane road, flat, posted at 55 Lead vehicle at 50 mi/hr Drive >= 2 times, 1 with device, 1 without >=1 practice + 1 test trial
Criteria	<=15% of device glances <=2.0 s 21/24 mean glance time <=2.0 s 21/24 total glance time <= 12.0 s

US DOT New Car Assessment (NCAP) Program

Document	Abbreviated Title
US DOT FCW NCAP	Forward crash warning system test
US DOT LDW NCAP	Lane departure warning system confirmation test
US DOT ESC NCAP	Electronic stability control confirmation test

SAE Standards and Recommended Practices from the SAE Safety and Human Factors Committee

Document	Shortened Name
J2364_200408	Navigation Function Accessibility While Driving
J2365 200205	Calculation of the Time to Complete In-Vehicle Navigation Tasks
J2395_200202	In-Vehicle Message Priority
J2396_200007	Definitions and Measures Related Driver Visual Behavior Using Video Techniques
J2399_200312	Adaptive Cruise Control (Acc) Operating Characteristics and User Interface
J2400_200308	Forward Collision Warning Systems: Operating Characteristics and User Interface
J2678_200408	Navigation Function Accessibility While Driving Rationale

J2802_201001	Blind Spot Monitoring System (BSMS): Operating Characteristics and User Interface
J2808 200708	Road/Lane Departure Warning Systems: Human Interface
J2830_200807	Process for Comprehension Testing of In-Vehicle Icons
J2831_201204	Design and Engineering for In-Vehicle Alphanumeric Messages
J2889/1_201205	Measurement of Minimum Noise Emitted by Road Vehicles

Only committee members have free access to documents. As an example, J2364 is \$66.

TC159 (Ergonomics) develops standards that provide background for Automotive UI work. (Selected groups)

- SC 1 General ergonomics principles
 - WG 1 Principles of ergonomics & ergonomic design
 - WG 2 Ergonomic principles related to mental work
- SC 3 Anthropometry and biomechanics
- SC 4 Ergonomics of human-system interaction
 - WG 1 Fundamentals of controls and signalling methods
 - WG 2 Visual display requirements
 - WG 3 Controls, workplace and environmental requirements
 - WG 5 Software ergonomics of HCI
 - WG 6 Human-centred design for interactive systems
 - WG 9 Tactile and haptic interaction
 - WG 11 Ease of operation of everyday products
- SC 5 Ergonomics of the physical environment

ISO TC159 (Ergonomics) has produced many standards that are of general and specific interest to human factors/ ergonomics professionals.

TC 159/SC 1 - General ergonomics principles

ISO 6385:2004	Ergonomic principles in the design of work systems
ISO 10075	Ergonomic principles related to mental workload (definitions, principles,
ISO/FDIS 26800	requirements) Ergonomics General approach, principles and concepts

TC 159/SC 4 - Ergonomics of human-system interaction

ISO 1503:2008 Spatial orient. & direx. of movement Design of displays & control actuators ISO 9355 ISO 11064 (7 pts) Design of control centers ISO 14915-1:2002 Multimedia user interfaces ISO/TR 16982:2010 **Usability methods** Spec. of human-system assessment ISO/TS 18152 ISO/TR 18529:2000 Human-centered life cycle process ISO 20282-1:2006 Everyday product context of use & user characteristics ISO/TS 20282-Test method for walk up & use 2:2006 products **ISO/NP TS 20282-3** Test method for consumer products ISO 20281-4:2007 Consumer product installation tests Tactile dots and bars on consumer ISO 24503:2011 products

ISO 9241 – Ergonomic requirements for office work with visual display terminals (VDTs) is a very important topic for the design computer hardware and software.

Examples: 4: keyboards

5: workstation layout

14: menus

15: commands17: form filling

143: forms

151: web interfaces 300-: visual displays 400-: input devices

TC 159/SC 5 - Ergonomics of the physical environment

ISO 7243:1989	WBGT
ISO 7731	Auditory danger signals
ISO 9921	Speech communication assessment
ISO 11428:1996	Visual danger signal general requirements & tests
ISO 11428:1996	Auditory & visual danger signals
ISO/TS 14505	Thermal environments in vehicles
ISO/NP 16077	Indoor air quality subj. assessment
ISO 24500:2010	Accessible design – sounds
ISO 24501:2010	Accessible design – luminance contrast
ISO/DIS 28803	Application of intl. physical standards to people with special requirements

International Telecommunications Union (ITU) Focus Group on Distraction (FG-Distraction)

http://www.itu.int/en/ITU-

T/focusgroups/distraction/Pages/default.aspx

Contact: Spennock@qnx.com

Reports to be produced

factors to consider when developing UI driver and passenger in-vehicle tasks optimal information flow and message formats techniques to reduce distraction related crashes

Requirements input

design guidance for mobile devices including phones methods to assess workload performance requirements for automotive servics coordination among components to reduce cognitive demand visual-manual guidelines

International Telecommunications Union P Series Terminals and subjective & objective assessment methods Examples

#	Title
P.800	Methods for subjective determination of transmission quality
P.805	Subjective evaluation of conversational quality
P.851	Subjective quality evaluation of telephone services based on spoken dialogue systems
P.862	Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs
P.863	Perceptual objective listening quality assessment

For additional information contact me or go to my team's web site.

Paul **Green**University of Michigan

pagreen@umich.edu +1 734 763 3795 www.umich.edu/~driving

